Posts tagged game
Consider the game of Nim. The best way to become acquainted is to play Nim: The Game, which I've coded up here. Win some games!
Solving Nim
Nim falls under a special class of games, in which, we have several independent games (each pile is its own game), perfect information (you and your opponent know everything), and sequentiality (the game always ends). It turns out every game of this type is equivalent, and we can use Nim as a model on how to solve them.
The most general way to find the optimal strategy is exhaustive enumeration, which we can do recursively.
class GameLogic:
def get_next_states(self, current_state):
pass
def is_losing_state(self, state):
pass
def can_move_to_win(gameLogic, current_state):
## take care of base case
if gameLogic.is_losing_state(current_state):
return False
## try all adjacent states, these are our opponent's states
next_states = gameLogic.get_next_states(current_state)
for next_state in next_states:
if can_move_to_win(gameLogic, next_state) is False:
return True # one could possibly return the next move here
## otherwise, we always give our opponent a winning state
return False
Of course exhaustive enumeration quickly becomes infeasible. However, the fact that there exists this type of recursive algorithm informs us that we should be looking at induction to solve Nim.
One way to get some intuition at the solution is to think of heaps of just 1 object. No heaps mean that we've already lost, and 1 heap means that we'll win. 2 heaps must reduce to 1 heap, which puts our opponent in a winning state, so we lose. 3 heaps must reduce to 2 heaps, so we'll win. Essentially, we'll win if there are an odd number of heaps.
Now, if we think about representing the number of objects in a heap as a binary number, we can imagine each binary digit as its own game. For example, imagine heaps of sizes, $(27,16,8,2,7)$. Represented as binary, this looks like \begin{align*} 27 &= (11011)_2 \\ 16 &= (10000)_2 \\ 8 &= (01000)_2 \\ 2 &= (00010)_2 \\ 7 &= (00111)_2. \end{align*} The columns corresponding to the $2$s place and $4$s place have an odd number of $1$s, so we can put our opponent in a losing state by removing $6$ objects from the last heap. \begin{align*} 27 &= (11011)_2 \\ 16 &= (10000)_2 \\ 8 &= (01000)_2 \\ 2 &= (00010)_2 \\ 7 - 6 = 1 &= (00001)_2. \end{align*}
Now, the XOR of all the heaps is $0$, so there are an even number of $1$s in each column. As we can see, we have a general algorithm for doing this. Let $N_1,N_2,\ldots,N_K$ be the size of our heaps. If $S = N_1 \oplus N_2 \oplus \cdots \oplus N_K \neq 0$, then $S$ has a nonzero digit. Consider the leftmost nonzero digit. Since $2^{k+1} > \sum_{j=0}^k 2^j$, we can remove objects such that this digit changes, and we can chose any digits to the right to be whatever is necessary so that the XOR of the heap sizes is $0$. Here's a more formal proof.
Proof that if $N_1 \oplus N_2 \oplus \cdots \oplus N_K = 0$ we're in a losing state
Suppose there are $K$ heaps. Define $N_k^{(t)}$ to be the number of objects in heap $k$ at turn $t$. Define $S^{(t)} = N_1^{(t)} \oplus N_2^{(t)} \oplus \cdots \oplus N_K^{(t)}$.
We lose when $N_1 = N_2 = \cdots = N_k = 0$, so if $S^{(t)} \neq 0$, the game is still active, and we have not lost. By the above algorithm, we can make it so that $S^{(t+1)} = 0$ for our opponent. Then, any move that our opponent does must necessarily make it so that $S^{(t+2)} \neq 0$. In this manner, our opponent always has $S^{(t + 2s + 1}) = 0$ for all $s$. Thus, either they lose, or they give us a state such that $S^{(t+2s)} \neq 0$, so we never lose. Since the game must end, eventually our opponent loses.
Sprague-Grundy Theorem
Amazingly this same idea can be applied to a variety of games that meets certain conditions through the Sprague-Grundy Theorem. I actually don't quite under the Wikipedia article, but this is how I see it.
We give every indepedent game a nimber, meaning that it is equivalent to a heap of that size in Nim. Games that are over are assigned the nimber $0$. To find the nimber of a non-terminating game position, we look at the nimbers of all the game positions that we can move to. The nimber of this position is smallest nonnegative integer strictly greater than all the nimbers that we can move to. So if we can move to the nimbers $\{0,1,3\}$, the nimber is $2$.
At any point of the game, each of our $K$ independent games has a nimber $N_k$. We're in a losing state if and only if $S = N_1 \oplus N_2 \oplus \cdots \oplus N_K = 0$.
For the $\Leftarrow$ direction, first suppose that $S^{(t)} = N_1^{(t)} \oplus N_2^{(t)} \oplus \cdots \oplus N_K^{(t)} = 0$. Because of the way that the nimber's are defined we any move that we do changes the nimber of exactly one of the independent games, so $N_k^{(t)} \neq N_k^{(t + 1)}$, for the next game positions consist of nimbers $1,2,\ldots, N_k^{(t)} - 1$. If we can move to $N_k^{(t)}$, then actually the nimber of the current game position is $N_k^{(t)} + 1$, a contradiction. Thus, we have ensured that $S^{(t + 1)} \neq 0$. Since we can always move to smaller nimbers, we can think of nimbers as the number of objects in a heap. In this way, the opponent applies the same algorithm to ensure that $S^{(t + 2s)} = 0$, so we can never put the opponent in a terminating position. Since the game must end, we'll eventually be in the terminating position.
For the $\Rightarrow$ direction, suppose that we're in a losing state. We prove the contrapositive. If $S^{(t)} = N_1^{(t)} \oplus N_2^{(t)} \oplus \cdots \oplus N_K^{(t)} \neq 0$, the game has not terminated, and we can make it so that $S^{(t+1)} = 0$ by construction of the nimbers. Thus, our opponent is always in a losing state, and since the game must terminate, we'll win.
Now, this is all very abstract, so let's look at an actual problem.
Floor Division Game
Consider the Floor Division Game from CodeChef. This is the problem that motivated me to learn about all this. Let's take a look at the problem statement.
Henry and Derek are waiting on a room, eager to join the Snackdown 2016 Qualifier Round. They decide to pass the time by playing a game.
In this game's setup, they write $N$ positive integers on a blackboard. Then the players take turns, starting with Henry. In a turn, a player selects one of the integers, divides it by $2$, $3$, $4$, $5$ or $6$, and then takes the floor to make it an integer again. If the integer becomes $0$, it is erased from the board. The player who makes the last move wins.
Henry and Derek are very competitive, so aside from wanting to win Snackdown, they also want to win this game. Assuming they play with the optimal strategy, your task is to predict who wins the game.
The independent games aren't too hard to see. We have $N$ of them in the form of the positive integers that we're given. The numbers are written clearly on the blackboard, so we have perfect information. This game is sequential since the numbers must decrease in value.
A first pass naive solutions uses dynamic programming. Each game position is a nonnegative integer. $0$ is the terminating game position, so its nimber is $0$. Each game position can move to at most $5$ new game positions after dividing by $2$, $3$, $4$, $5$ or $6$ and taking the floor. So if we know the nimbers of these $5$ game positions, it's a simple matter to compute the nimber the current game position. Indeed, here's such a solution.
#include <iostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;
long long computeNimber(long long a, unordered_map<long long, long long> &nimbers) {
if (nimbers.count(a)) return nimbers[a];
if (a == 0LL) return 0LL;
unordered_set<long long> moves;
for (int d = 2; d <= 6; ++d) moves.insert(a/d);
unordered_set<long long> neighboringNimbers;
for (long long nextA : moves) {
neighboringNimbers.insert(computeNimber(nextA, nimbers));
}
long long nimber = 0;
while (neighboringNimbers.count(nimber)) ++nimber;
return nimbers[a] = nimber;
}
string findWinner(const vector<long long> &A, unordered_map<long long, long long> &nimbers) {
long long cumulativeXor = 0;
for (long long a : A) {
cumulativeXor ^= computeNimber(a, nimbers);
}
return cumulativeXor == 0 ? "Derek" : "Henry";
}
int main(int argc, char *argv[]) {
ios::sync_with_stdio(false); cin.tie(NULL);
int T; cin >> T;
unordered_map<long long, long long> nimbers;
nimbers[0] = 0;
for (int t = 0; t < T; ++t) {
int N; cin >> N;
vector<long long> A; A.reserve(N);
for (int n = 0; n < N; ++n) {
long long a; cin >> a;
A.push_back(a);
}
cout << findWinner(A, nimbers) << '\n';
}
cout << flush;
return 0;
}
Unfortunately, in a worst case scenario, we'll have to start computing nimbers from $0$ and to $\max\left(A_1,A_2,\ldots,A_N\right)$. Since $1 \leq A_n \leq 10^{18}$ can be very large, this solution breaks down. We can speed this up with some mathematical induction.
To me, the pattern was not obvious at all. To help discover it, I generated the nimbers for smaller numbers. This is what I found.
Game Positions | Nimber | Numbers in Interval |
---|---|---|
$[0,1)$ | $0$ | $1$ |
$[1,2)$ | $1$ | $1$ |
$[2,4)$ | $2$ | $2$ |
$[4,6)$ | $3$ | $2$ |
$[6,12)$ | $0$ | $6$ |
$[12,24)$ | $1$ | $12$ |
$[24,48)$ | $2$ | $24$ |
$[48,72)$ | $3$ | $24$ |
$[72,144)$ | $0$ | $72$ |
$[144,288)$ | $1$ | $144$ |
$[288,576)$ | $2$ | $288$ |
$[576, 864)$ | $3$ | $288$ |
$[864,1728)$ | $0$ | $864$ |
$[1728,3456)$ | $1$ | $1728$ |
$[3456,6912)$ | $2$ | $3456$ |
$[6912, 10368)$ | $3$ | $3456$ |
$\vdots$ | $\vdots$ | $\vdots$ |
Hopefully, you can start to see some sort of pattern here. We have repeating cycles of $0$s, $1$2, $2$s, and $3$s. Look at the starts of the cycles $0$, $6$, $72$, and $864$. The first cycle is an exception, but the following cycles all start at $6 \cdot 12^k$ for some nonnegative integer $k$.
Also look at the number of $0$s, $1$2, $2$s, and $3$s. Again, with the exception of the transition from the first cycle to the second cycle, the quantity is multiplied by 12. Let $s$ be the cycle start and $L$ be the cycle length. Then, $[s, s + L/11)$ has nimber $0$, $[s + L/11, s + 3L/11)$ has nimber $1$, $[s + 3L/11, s + 7L/11)$ has nimber $2$, and $[s + 7L/11, s + L)$ has nimber $3$.
Now, given that the penalty for wrong submissions on CodeChef is rather light, you could code this up and submit it now, but let's try to rigorously prove it. It's true when $s_0 = 6$ and $L_0 = 66$. So, we have taken care of the base case. Define $s_k = 12^ks_0$ and $L_k = 12^kL_0$. Notice that $L_k$ is always divisible by $11$ since $$L_{k} = s_{k+1} - s_{k} = 12^{k+1}s_0 - 12^{k}s_0 = 12^{k}s_0(12 - 1) = 11 \cdot 12^{k}s_0.$$
Our induction hypothesis is that this pattern holds in the interval $[s_k, s_k + L_k)$. Now, we attack the problem with case analysis.
- Suppose that $x \in \left[s_{k+1}, s_k + \frac{1}{11}L_{k+1}\right)$. We have that $s_{k+1} = 12s_k$ and $L_{k+1} = 12L_k = 12\cdot 11s_k$, so we have that \begin{align*} 12s_k \leq &~~~x < 2 \cdot 12s_k = 2s_{k+1} \\ \left\lfloor\frac{12}{d}s_k\right\rfloor \leq &\left\lfloor\frac{x}{d}\right\rfloor < \left\lfloor\frac{2}{d}s_{k+1}\right\rfloor \\ 2s_k \leq &\left\lfloor\frac{x}{d}\right\rfloor < s_{k+1} \\ s_k + \frac{1}{11}L_k \leq &\left\lfloor\frac{x}{d}\right\rfloor < s_{k+1} \end{align*} since $2 \leq d \leq 6$, and $L_k = 11 \cdot 12^{k}s_0 = 11s_k$. Thus, $\left\lfloor\frac{x}{d}\right\rfloor$ falls entirely in the previous cycle, but it's large enough so it never has the nimber $0$. Thus, the smallest nonnegative integer among next game positions is $0$, so $x$ has the nimber $0$.
- Now, suppose that $x \in \left[s_{k+1} + \frac{1}{11}L_{k+1}, s_{k+1} + \frac{3}{11}L_{k+1}\right)$. Then, we have that \begin{align*} s_{k+1} + \frac{1}{11}L_{k+1} \leq &~~~x < s_{k+1} + \frac{3}{11}L_{k+1} \\ 2s_{k+1} \leq &~~~x < 4s_{k+1} \\ 2 \cdot 12s_{k} \leq &~~~x < 4 \cdot 12s_{k} \\ \left\lfloor \frac{2 \cdot 12}{d}s_{k}\right\rfloor \leq &\left\lfloor \frac{x}{d} \right\rfloor < \left\lfloor\frac{4 \cdot 12}{d}s_{k}\right\rfloor \\ s_k + 3s_k = 4s_k \leq &\left\lfloor \frac{x}{d} \right\rfloor < 24s_k = 12s_k + 12s_k = s_{k+1} + s_{k+1} \\ s_k + \frac{3}{11}L_k \leq &\left\lfloor \frac{x}{d} \right\rfloor < s_{k+1} + \frac{1}{11}L_{k+1}. \end{align*} Thus, $\left\lfloor \frac{x}{d} \right\rfloor$ lies in both the previous cycle and current cycle. In the previous cycle it lies in the part with nimbers $2$ and $3$. In the current cycle, we're in the part with nimber $0$. In fact, if we let $d = 2$, we have that \begin{equation*} s_{k+1} \leq \left\lfloor \frac{x}{2} \right\rfloor < s_{k+1} + \frac{1}{11}L_{k+1}, \end{equation*} so we can always reach a game position with nimber $0$. Since we can never reach a game position with nimber $1$, this game position has nimber $1$.
- Suppose that $x \in \left[s_{k+1} + \frac{3}{11}L_{k+1}, s_{k+1} + \frac{7}{11}L_{k+1}\right)$. We follow the same ideas, here. \begin{align*} s_{k+1} + \frac{3}{11}L_{k+1} \leq &~~~x < s_{k+1} + \frac{7}{11}L_{k+1} \\ 4s_{k+1} \leq &~~~x < 8s_{k+1} \\ 8s_{k} \leq &\left\lfloor \frac{x}{d} \right\rfloor < 4s_{k+1} \\ s_{k} + \frac{7}{11}L_k \leq &\left\lfloor \frac{x}{d} \right\rfloor < s_{k+1} + \frac{3}{11}L_{k+1}, \end{align*} so $\left\lfloor \frac{x}{d} \right\rfloor$ falls in the previous cycle where the nimber is $3$ and in the current cycle where the nimbers are $0$ and $1$. By fixing $d = 2$, we have that \begin{equation} s_{k+1} + \frac{1}{11}L_{k+1} = 2s_{k+1} \leq \left\lfloor \frac{x}{2} \right\rfloor < 4s_{k+1} = s_{k+1} + frac{3}{11}L_{k+1}, \end{equation} so we can always get to a number where the nimber is $1$. By fixing $d = 4$, we \begin{equation} s_{k+1} \leq \left\lfloor \frac{x}{4} \right\rfloor < 2s_{k+1} = s_{k+1} + \frac{1}{11}L_{k+1}, \end{equation} so we can always get to a number where the nimber is $0$. Since a nimber of $2$ is impossible to reach, the current nimber is $2$.
- Finally, the last case is $x \in \left[s_{k+1} + \frac{7}{11}L_{k+1}, s_{k+1} + L_{k+1}\right)$. This case is actually a little different. \begin{align*} s_{k+1} + \frac{7}{11}L_{k+1} \leq &~~~x < s_{k+1} + L_{k+1} \\ 8s_{k+1} \leq &~~~x < 12s_{k+1} \\ s_{k+1} < \left\lfloor \frac{4}{3}s_{k+1} \right\rfloor \leq &\left\lfloor \frac{x}{d} \right\rfloor < 6s_{k+1}, \end{align*} so we're entirely in the current cycle now. If we use, $d = 6$, then \begin{equation*} s_{k+1} < \left\lfloor \frac{4}{3}s_{k+1} \right\rfloor \leq \left\lfloor \frac{x}{6} \right\rfloor < 2s_{k+1} = s_{k+1} + \frac{1}{11}L_{k+1}, \end{equation*} so we can reach nimber $0$. If we use $d = 4$, we have \begin{equation*} s_{k+1} + \frac{1}{11}L_{k+1} = 2s_{k+1} \leq \left\lfloor \frac{x}{4} \right\rfloor < 3s_{k+1} = s_{k+1} + \frac{2}{11}L_{k+1}, \end{equation*} which gives us a nimber of $1$. Finally, if we use $d = 2$, \begin{equation*} s_{k+1} + \frac{3}{11}L_{k+1} \leq 4s_{k+1} \leq\left\lfloor \frac{x}{4} \right\rfloor < 6s_{k+1} = s_{k+1} + \frac{5}{11}L_{k+1}, \end{equation*} so we can get a nimber of $2$, too. This is the largest nimber that we can get since $d \geq 2$, so $x$ must have nimber $3$.
This covers all the cases, so we're done. Here's the complete code for a $O\left(\max(A_k)\log N\right)$ solution.
#include <cmath>
#include <iostream>
#include <string>>
#include <vector>
using namespace std;
long long computeNimber(long long a) {
if (a < 6) { // exceptional cases
if (a < 1) return 0;
if (a < 2) return 1;
if (a < 4) return 2;
return 3;
}
unsigned long long cycleStart = 6;
while (12*cycleStart <= a) cycleStart *= 12;
if (a < 2*cycleStart) return 0;
if (a < 4*cycleStart) return 1;
if (a < 8*cycleStart) return 2;
return 3;
}
string findWinner(const vector<long long> &A) {
long long cumulativeXor = 0;
for (long long a : A) cumulativeXor ^= computeNimber(a);
return cumulativeXor == 0 ? "Derek" : "Henry";
}
int main(int argc, char *argv[]) {
ios::sync_with_stdio(false); cin.tie(NULL);
int T; cin >> T;
for (int t = 0; t < T; ++t) {
int N; cin >> N;
vector<long long> A; A.reserve(N);
for (int n = 0; n < N; ++n) {
long long a; cin >> a;
A.push_back(a);
}
cout << findWinner(A) << '\n';
}
cout << flush;
return 0;
}