I recently added equation numbering to my blog. To see it in action, here's one of my homework exercises. I like this problem because I actually found it useful to diagonalize to exponentiate the matrix.
Let $\{X_n\}$ be the random walk on the space $\{0,1,2,3,4\},$ with $0$ and $4$ absorbing and with $p(i,i) = 1/2,$ $p(i,i+1) = p(i,i-1)= 1/4$ for $1 \leq i \leq 3.$ Let $\tau$ denote the absorption time. The graph can be seen in the title picture.
Part A
What is the limit as $n \rightarrow \infty$ of the law $X_n$ conditioned on non-absorption, that is, $$\lim_{n \rightarrow \infty}\mathcal{L}(X_n \mid \tau > n)?$$
Solution
We have that $\displaystyle \boxed{ \lim_{n \rightarrow \infty}\mathcal{L}\left(X_n \mid \tau > n\right) = \begin{cases} 1 - \frac{1}{\sqrt{2}}, &X_n \in \{1,3\} \\ \sqrt{2} - 1, &X_n = 2. \end{cases}}$
To see this, without loss of generality, let $X_0 = 2.$ We can do this since if $X_0 = 1$ or $X_0 = 3,$ then $\mathbb{P}(X_m = X_0,~\forall m \leq n \mid \tau > n) \rightarrow 0$ as $n \rightarrow \infty.$ Then, we can apply the Markov property.
Now, define $p_n^*(x,y) = \mathbb{P}(X_{n} = y \mid \tau > n,~X_0 = 2).$
We have that
\begin{equation}
p^*_1(2,y) = \begin{cases}
1/4, &y \in \{1,3\} \\
1/2, &y = 2.
\end{cases}
~\text{and, in general,}~
p_n^*(2,y) = \begin{cases}
a_n, &y \in \{1,3\} \\
b_n = 1 - 2a_n, &y = 2
\end{cases}
\label{eqn:3a_a_def}
\end{equation}
by symmetry, where $a_1 = 1/4$ and $b_1 = 1/2 = 1 - 2a_1.$
Now, we have that
\begin{align}
a_{n+1} = \mathbb{P}(X_{n+1} = 1 \mid \tau > n + 1,~X_0 = 2)
&= p_{n+1}^*(2,1) \nonumber\\
&= \frac{p_n^*(2,1)p(1,1) + p_n^*(2,2)p(2,1)}{\mathbb{P}(\tau > n +
1 \mid X_0 = 2, \tau > n)} \nonumber\\
&= \frac{p_n^*(2,1)p(1,1) + p_n^*(2,2)p(2,1)}{1 -
p_n^*(2,1)p(1,0) - p_n^*(2,3)p(3,4)} \nonumber\\
&= \frac{a_n(1/2) + b_n(1/4)}{1 - (2a_n/4)} \nonumber\\
&= \frac{a_n(1/2) + (1-2a_n)(1/4)}{(4 - 2a_n)/4} \nonumber\\
&= \frac{1}{4 - 2a_n}.
\label{eqn:3a_a_recurs}
\end{align}
$a_n$ converges by induction because
$$
|a_{n+1} - a_n| = \left|\frac{1}{4-2a_n} -
\frac{1}{4-a_{n-1}}\right|
= \left|\frac{4 - 2a_{n-1} - 4 +
2a_n}{(4-2a_{n})(4-2a_{n-1})}\right|
\leq \frac{1}{2}\left|a_n-a_{n-1}\right|
$$
since $0 \leq a_n \leq 1$ for all $n.$ Solving for $a$ in
\begin{equation}
a = \frac{1}{4-2a} \Rightarrow 2a^2 - 4a + 1 = 0 \Rightarrow
a = 1 \pm \frac{1}{\sqrt{2}}.
\label{eqn:3a_a}
\end{equation}
Thus, we must have that $a_n \rightarrow 1 - \frac{1}{\sqrt{2}}$
since $a_n \leq 1$ for all $n.$ Then, we have that $b_n
\rightarrow b = 1 - 2a = \sqrt{2} - 1.$
Part B
What is the limiting distribution conditioned on never getting absorbed, that is, $$ \lim_{n \rightarrow \infty}\lim_{M \rightarrow \infty} \mathcal{L}(X_n \mid \tau > M)? $$
Solution
We have that $\displaystyle\boxed{\lim_{n \rightarrow \infty}\lim_{M \rightarrow \infty}\mathcal{L}(X_n \mid \tau > M)= \begin{cases}1/4, &X_n \in \{1,3\}\\ 1/2, &X_n = 2.\end{cases}}$
Again, we can assume without loss of generality that $X_0 = 2.$ Fix $n \in \mathbb{N}.$ From Equation \ref{eqn:3a_a_def} in the previous part, we know $\mathbb{P}(X_n = 2\mid \tau > n) = 1-2a_{n},$ where we define $a_0 = 0.$ Now, suppose, we know $\mathbb{P}(X_n = 2 \mid \tau > M)$ for $M \geq n.$ Then, by Bayes' theorem, \begin{align} \mathbb{P}(X_n = 2 \mid \tau > M + 1) &= \mathbb{P}(X_n = 2 \mid \tau > M + 1, \tau > M) \nonumber\\ &= \frac{\mathbb{P}(\tau > M + 1 \mid X_n = 2, \tau > M)\mathbb{P}(X_n = 2 \mid \tau > M)}{\mathbb{P}(\tau > M + 1 \mid \tau > M)}. \label{eqn:3b_bayes} \end{align} Calculating the two unknown factors, we have that in the denominator, \begin{align} \mathbb{P}(\tau > M + 1 \mid \tau > M) &= \sum_{x=1}^3 \mathbb{P}(\tau > M + 1, X_M = x \mid \tau > M) \nonumber\\ &= \frac{3}{4}\left(\mathbb{P}(X_M = 1 \mid \tau > M) + \mathbb{P}(X_M = 3 \mid \tau > M)\right) + \mathbb{P}(X_M = 2 \mid \tau > M)\nonumber\\ &= \frac{3}{4}\left(a_{M} + a_{M}\right) + (1-2a_{M}) \nonumber\\ &= 1 - \frac{1}{2}a_{M}, \label{eqn:3b_tau} \end{align} and in the numerator, \begin{align} \mathbb{P}(\tau > M + 1 \mid X_n = 2, \tau > M) &= \sum_{x=1}^3\mathbb{P}(\tau > M + 1, X_M = x \mid X_n = 2, \tau > M)\nonumber\\ &= \sum_{x=1}^3\mathbb{P}(\tau > M + 1, X_M = x \mid X_n = 2, \tau > M)\nonumber\\ &= \frac{3}{2}\mathbb{P}(X_M = 1 \mid X_n = 2, \tau > M) + \mathbb{P}(X_M = 2 \mid X_n = 2, \tau > M) \nonumber\\ &= \frac{3}{2}a_{M - n} + 1 - 2a_{M - n} \nonumber\\ &= 1 - \frac{1}{2}a_{M - n}, \label{eqn:3b_bayes_num} \end{align} where we use that $\mathbb{P}(\tau > M + 1, X_M = 1 \mid X_n = 2, \tau > M) = \mathbb{P}(\tau > M + 1, X_M = 3 \mid X_n = 2, \tau > M),$ and the fact that $\mathbb{P}(X_M = x \mid X_n = 2, \tau > M)$ is the probability of a chain starting at $2$ that doesn't hit an absorbing state in $M - n$ transistions.
Putting together Equations \ref{eqn:3b_bayes_num}, \ref{eqn:3b_tau}, and \ref{eqn:3b_bayes}, we have that \begin{equation*} \mathbb{P}(X_n = 2 \mid \tau > M + 1) = \frac{1 - \frac{1}{2}a_{M-n}}{1 - \frac{1}{2}a_{M}}\mathbb{P}(X_n = 2 \mid \tau > M), \end{equation*} and by induction, we'll have that \begin{equation*} \mathbb{P}(X_n = 2 \mid \tau > M) = (1 - 2a_{n}) \prod_{k=n}^{M - 1} \frac{1 - \frac{1}{2}a_{k-n}}{1 - \frac{1}{2}a_{k}}, \end{equation*} where the product is just $1 - 2a_{n}$ if $M = n.$ For large enough $M,$ when $k \geq 2n$ the factors in the numerator will cancel, so we will have that for $M \geq 2n$ that \begin{align} \mathbb{P}(X_n = 2 \mid \tau > M) &= (1 - 2a_{n}) \prod_{k=0}^{n - 1}\left(1-\frac{1}{2}a_{k}\right) \prod_{k=M - n}^{M-1}\frac{1}{1-\frac{1}{2}a_{k}} \nonumber\\ &= (1 - 2a_{n}) \prod_{k=0}^{n - 1}\left(4-2a_{k}\right) \prod_{k=M - n}^{M-1}\frac{1}{4-2a_{k}} \nonumber\\ &= (1 - 2a_{n}) \prod_{k=1}^{n}\frac{1}{a_{k}} \prod_{k=M - n + 1}^{M}a_k \label{eqn:3b_p2} \end{align} by the recursive definition of $a_n$ in Equation \ref{eqn:3a_a_recurs}.
Taking the limit as $M \rightarrow \infty,$ we have that \begin{equation} \lim_{M \rightarrow \infty} \mathbb{P}(X_n = 2 \mid \tau > M) = (1 - 2a_{n})a^{n}\prod_{k=1}^{n}\frac{1}{a_{k}}. \label{eqn:3b_p_lim} \end{equation} by Equation \ref{eqn:3a_a}, where $\displaystyle a = 1 - \frac{1}{\sqrt{2}} = \frac{1}{2 + \sqrt{2}}.$
Define $c_{-1} = 0$ and $c_0 = 1/4,$ so $a_0 = 0 = \frac{c_{-1}}{c_0}.$ In general, we can write $a_n = \frac{c_{n-1}}{c_n},$ where $c_n = -2c_{n-2} + 4c_{n-1}$ for $k \geq 1.$ To see this, by definition of $a_n$ in Equation \ref{eqn:3a_a_recurs}, \begin{equation} a_{n + 1} = \frac{1}{4 - 2a_n} = \frac{1}{4 - 2\frac{c_{n-1}}{c_{n}}} = \frac{c_n}{-2c_{n-1} + 4c_n} = \frac{c_n}{c_{n+1}}. \label{eqn:3b_a_c} \end{equation}
Now, with Equation \ref{eqn:3b_a_c}, Equation \ref{eqn:3b_p_lim} becomes \begin{equation} \lim_{M \rightarrow \infty} \mathbb{P}(X_n = 2 \mid \tau > M) = (1 - 2a_{n})a^{n}\prod_{k=1}^{n}\frac{c_k}{c_{k-1}} = (1 - 2a_{n})a^{n}\frac{c_{n}}{c_0} \label{eqn:3b_p_lim_2} \end{equation}
Note, that we can rewrite $c_n$ by exponentiating a matrix: \begin{align} \begin{pmatrix} c_{n} \\ c_{n + 1} \end{pmatrix} &= \begin{pmatrix} 0 & 1 \\ -2 & 4 \end{pmatrix}^n \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} \nonumber\\ &= \begin{pmatrix} 1 & 1 \\ 2 + \sqrt{2} & 2 - \sqrt{2} \end{pmatrix} \begin{pmatrix} 2 + \sqrt{2} & 0 \\ 0 & 2 - \sqrt{2} \end{pmatrix}^n \begin{pmatrix} \frac{1}{2}-\frac{1}{\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{1}{2}+\frac{1}{\sqrt{2}} & -\frac{1}{2\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1/4 \\ 1 \end{pmatrix} \nonumber\\ &= \begin{pmatrix} \frac{1}{8}\left((2+\sqrt{2})^n(1+\sqrt{2}) + (2-\sqrt{2})^n(1-\sqrt{2})\right) \\ \frac{1}{8}\left((2+\sqrt{2})^{n+1}(1+\sqrt{2}) + (2-\sqrt{2})^{n+1}(1-\sqrt{2})\right) \end{pmatrix} \label{eqn:3b_c_matrix} \end{align} by diagonalization. Using Equation \ref{eqn:3b_c_matrix}, Equation \ref{eqn:3b_p_lim_2} becomes \begin{equation} \lim_{M \rightarrow \infty} \mathbb{P}(X_n = 2 \mid \tau > M) = \frac{1}{2}(1 - 2a_{n})\left((1+\sqrt{2}) + \left(\frac{2-\sqrt{2}}{2+\sqrt{2}}\right)^n(1-\sqrt{2})\right), \label{eqn:3b_p_lim_3} \end{equation} where we recall that $a = \frac{1}{2 + \sqrt{2}}.$ $|2-\sqrt{2}| < 1$ and so, taking the limit as $n \rightarrow \infty$ of Equation \ref{eqn:3b_p_lim_3}, the second term goes to $0$: \begin{equation} \lim_{n\rightarrow 0}\lim_{M \rightarrow \infty} \mathbb{P}(X_n = 2 \mid \tau > M) = \frac{1-2a}{2}(1+\sqrt{2}) = \frac{\sqrt{2} - 1}{2}(1+\sqrt{2}) = \frac{1}{2}. \label{eqn:3b_p_lim_lim} \end{equation} And finally, by symmetry, \begin{align} \lim_{n\rightarrow 0}\lim_{M \rightarrow \infty} \mathbb{P}(X_n = 1 \mid \tau > M) &= \lim_{n\rightarrow 0}\lim_{M \rightarrow \infty} \mathbb{P}(X_n = 3 \mid \tau > M) \nonumber\\ &= \frac{1 - \lim_{n\rightarrow 0}\lim_{M \rightarrow \infty} \mathbb{P}(X_n = 2 \mid \tau > M)}{2} \nonumber\\ &= \frac{1}{4}. \label{eqn:3b_p_1_3} \end{align} Equations \ref{eqn:3b_p_lim_lim} and \ref{eqn:3b_p_1_3} combine to give us the limiting distribution.
Graphs in $\LaTeX$
Here's the code for the graph. I used a package called tikz
.
\documentclass[10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{arrows}
\usepackage[active, tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\renewcommand\PreviewBbAdjust {-0bp -25bp 0bp 25bp}
\begin{document}
\begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.75cm,
thick,main node/.style={circle,draw}]
\node[main node] (0) {$0$};
\node[main node] (1) [right of=0] {$1$};
\node[main node] (2) [right of=1] {$2$};
\node[main node] (3) [right of=2] {$3$};
\node[main node] (4) [right of=3] {$4$};
\path[every node/.style={font=\sffamily}]
(0) edge [loop above] node {$1$} (0)
(0)
(1) edge [bend right] node [below] {$1/4$} (2)
edge [loop above] node {$1/2$} (1)
edge node [below] {$1/4$} (0)
(1)
(2) edge [bend right] node [above] {$1/4$} (1)
edge [loop below] node {$1/2$} (2)
edge [bend left] node [above] {$1/4$} (3)
(2)
(3) edge [bend left] node [below] {$1/4$} (2)
edge [loop above] node {$1/2$} (3)
edge node [below] {$1/4$} (4)
(3)
(4) edge [loop above] node {$1$} (4);
\end{tikzpicture}
\end{document}
Then, to convert the graph to a png
file with a transparent background, I used ImageMagick.
convert -density 300 graph.pdf -format png graph.png
New Comment
Comments
This reminds me of the (much simpler) problem of calculating a tennis player's win probability given that game is at deuce, and we know the player's probability of winning a point (iid).
What class is this?
The class is probability.
Oh, interesting way to look at it. Yeah, I guess deuce would be state 2, and some one winning would be state 0 or 4. Basically, I'm calculating the distribution if the no one ever wins.